Key Responsibilities
* Develop and maintain scalable data pipelines using Python, Airflow, and PySpark to process large volumes of financial transaction data.
* Implement and optimize MLOps infrastructure on AWS to automate the full machine learning lifecycle from development to production.
* Build and maintain deployment pipelines for ML models using SageMaker and other AWS services.
* Collaborate with data scientists and business stakeholders to implement machine learning solutions for fraud detection, risk assessment, and financial forecasting.
* Ensure data quality, reliability, and security across all data engineering workloads.
* Optimize data architecture to improve performance, scalability, and cost-efficiency.
* Implement monitoring and alerting systems to ensure production ML models perform as expected.